Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 8(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36294556

RESUMO

The industrially important non-conventional yeast Komagataella phaffii suffers from low rates of homologous recombination, making site specific genetic engineering tedious. Therefore, genome editing using CRISPR/Cas represents a simple and efficient alternative. To characterize on- and off-target mutations caused by CRISPR/Cas9 followed by non-homologous end joining repair, we chose a diverse set of CRISPR/Cas targets and conducted whole genome sequencing on 146 CRISPR/Cas9 engineered single colonies. We compared the outcomes of single target CRISPR transformations to double target experiments. Furthermore, we examined the extent of possible large deletions by targeting a large genomic region, which is likely to be non-essential. The analysis of on-target mutations showed an unexpectedly high number of large deletions and chromosomal rearrangements at the CRISPR target loci. We also observed an increase of on-target structural variants in double target experiments as compared to single target experiments. Targeting of two loci within a putatively non-essential region led to a truncation of chromosome 3 at the target locus in multiple cases, causing the deletion of 20 genes and several ribosomal DNA repeats. The identified de novo off-target mutations were rare and randomly distributed, with no apparent connection to unspecific CRISPR/Cas9 off-target binding sites.

2.
BMC Biol ; 19(1): 177, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454477

RESUMO

BACKGROUND: Apomixis, the asexual reproduction through seeds, occurs in over 40 plant families and avoids the hidden cost of sex. Apomictic plants are thought to have an advantage in sparse populations and when colonizing new areas but may have a disadvantage in changing environments because they propagate via fixed genotypes. In this study, we separated the influences of different genetic backgrounds (potentially reflecting local adaptation) from those of the mode of reproduction, i.e., sexual vs. apomictic, on nine fitness-related traits in Hieracium pilosella L. We aimed to test whether apomixis per se may provide a fitness advantage in different competitive environments in a common garden setting. RESULTS: To separate the effects of genetic background from those of reproductive mode, we generated five families of apomictic and sexual full siblings by crossing two paternal with four maternal parents. Under competition, apomictic plants showed reproductive assurance (probability of seeding, fertility), while offspring of sexual plants with the same genetic background had a higher germination rate. Sexual plants grew better (biomass) than apomictic plants in the presence of grass as a competitor but apomictic plants spread further vegetatively (maximum stolon length) when their competitors were sexual plants of the same species. Furthermore, genetic background as represented by the five full-sibling families influenced maximum stolon length, the number of seeds, and total fitness. Under competition with grass, genetic background influenced fecundity, the number of seeds, and germination rate. CONCLUSIONS: Our results suggest that both the mode of reproduction as well as the genetic background affect the success of H. pilosella in competitive environments. Total fitness, the most relevant trait for adaptation, was only affected by the genetic background. However, we also show for the first time that apomixis per se has effects on fitness-related traits that are not confounded by-and thus independent of-the genetic background.


Assuntos
Apomixia , Asteraceae , Apomixia/genética , Asteraceae/genética , Patrimônio Genético , Fenótipo , Reprodução Assexuada/genética , Sementes/genética
3.
Mol Ecol ; 29(22): 4350-4365, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32969558

RESUMO

It has long been discussed to what extent related species develop similar genetic mechanisms to adapt to similar environments. Most studies documenting such convergence have either used different lineages within species or surveyed only a limited portion of the genome. Here, we investigated whether similar or different sets of orthologous genes were involved in genetic adaptation of natural populations of three related plant species to similar environmental gradients in the Alps. We used whole-genome pooled population sequencing to study genome-wide SNP variation in 18 natural populations of three Brassicaceae (Arabis alpina, Arabidopsis halleri, and Cardamine resedifolia) from the Swiss Alps. We first de novo assembled draft reference genomes for all three species. We then ran population and landscape genomic analyses with ~3 million SNPs per species to look for shared genomic signatures of selection and adaptation in response to similar environmental gradients acting on these species. Genes with a signature of convergent adaptation were found at significantly higher numbers than expected by chance. The most closely related species pair showed the highest relative over-representation of shared adaptation signatures. Moreover, the identified genes of convergent adaptation were enriched for nonsynonymous mutations, suggesting functional relevance of these genes, even though many of the identified candidate genes have hitherto unknown or poorly described functions based on comparison with Arabidopsis thaliana. We conclude that adaptation to heterogeneous Alpine environments in related species is partly driven by convergent evolution, but that most of the genomic signatures of adaptation remain species-specific.


Assuntos
Adaptação Fisiológica , Arabis , Brassicaceae , Cardamine , Adaptação Fisiológica/genética , Brassicaceae/genética , Genômica
4.
Sci Rep ; 10(1): 8269, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427828

RESUMO

Apomixis, the asexual reproduction through seeds, is thought to provide reproductive assurance when ploidy is not even and/or when population density is low. Therefore, apomicts are expected to be more abundant, and the frequency of apomictic offspring higher, at early stages of primary succession when mates are rare. To test this hypothesis, we sampled facultative apomictic Hieracium pilosella L. along the successional gradient on a glacier forefield and determined their ploidy, the level of apomixis in their offspring, and the genetic diversity of the entire meta-population and within subpopulations. We found that apomixis is more common in odd- and aneuploid cytotypes, which are more frequent at early stages of primary succession. However, apomixis was uncommon at all successional stages and sexual hexaploids were dominating throughout. Reproductive assurance was reflected in the higher fertility of all odd-ploid apomictic plants (3×, 5×) by avoiding meiosis, illustrating that apomixis provides an escape from sterility, as proposed by Darlington. Odd-ploid plants are supposedly better colonizers (Baker's law), which is supported by their higher occurrence close to the glacier snout. Independent of succession, we found gene flow between apomicts and sexuals, which allows for the continuous creation of new apomictic and sexual genotypes. We conclude that apomixis in H. pilosella does indeed provide an escape from sterility, and therefore reproductive assurance, in aneuploid cytotypes. We further propose that apomixis preserves beneficial combinations of unlinked alleles in every generation for as long as apomictic genotypes persist in the population.


Assuntos
Asteraceae/fisiologia , DNA de Plantas/genética , Variação Genética , Asteraceae/genética , Fertilidade , Fluxo Gênico , Genótipo , Camada de Gelo , Ploidias , Suíça
5.
Philos Trans R Soc Lond B Biol Sci ; 374(1777): 20180243, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31154972

RESUMO

It is a plausible hypothesis that parallel adaptation events to the same environmental challenge should result in genetic changes of similar or identical effects, depending on the underlying fitness landscapes. However, systematic testing of this is scarce. Here we examine this hypothesis in two closely related plant species, Arabidopsis halleri and Arabidopsis arenosa, which co-occur at two calamine metalliferous (M) sites harbouring toxic levels of the heavy metals zinc and cadmium. We conduct individual genome resequencing alongside soil elemental analysis for 64 plants from eight populations on M and non-metalliferous (NM) soils, and identify genomic footprints of selection and local adaptation. Selective sweep and environmental association analyses indicate a modest degree of gene as well as functional network convergence, whereby the proximal molecular factors mediating this convergence mostly differ between site pairs and species. Notably, we observe repeated selection on identical single nucleotide polymorphisms in several A. halleri genes at two independently colonized M sites. Our data suggest that species-specific metal handling and other biological features could explain a low degree of convergence between species. The parallel establishment of plant populations on calamine M soils involves convergent evolution, which will probably be more pervasive across sites purposely chosen for maximal similarity in soil composition. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.


Assuntos
Arabidopsis/genética , Evolução Biológica , Adaptação Fisiológica , Arabidopsis/classificação , Arabidopsis/fisiologia , Cádmio/metabolismo , Polimorfismo de Nucleotídeo Único , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Zinco/metabolismo
6.
Nat Ecol Evol ; 3(3): 457-468, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804518

RESUMO

Ploidy-variable species allow direct inference of the effects of chromosome copy number on fundamental evolutionary processes. While an abundance of theoretical work suggests polyploidy should leave distinct population genomic signatures, empirical data remains sparse. We sequenced ~300 individuals from 39 populations of Arabidopsis arenosa, a naturally diploid-autotetraploid species. We find that the impacts of polyploidy on population genomic processes are subtle yet pervasive, such as reduced efficiency of purifying selection, differences in linked selection and rampant gene flow from diploids. Initial masking of deleterious mutations, faster rates of nucleotide substitution and interploidy introgression likely conspire to shape the evolutionary potential of polyploids.


Assuntos
Arabidopsis/genética , Duplicação Gênica , Fluxo Gênico , Genoma de Planta , Evolução Molecular , Metagenômica
7.
Sci Rep ; 8(1): 16085, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382172

RESUMO

When plants adapt to local environments, strong signatures of selection are expected in the genome, particularly in high-stress environments such as trace metal element enriched (metalliferous) soils. Using Arabidopsis halleri, a model species for metal homeostasis and adaptation to extreme environments, we identifid genes, gene variants, and pathways that are associated with soil properties and may thus contribute to adaptation to high concentrations of trace metal elements. We analysed whole-genome Pool-seq data from two metallicolous (from metalliferous soils) and two non-metallicolous populations (in total 119 individuals) and associated allele frequencies of the identified single-nucleotide polymorphisms (SNPs) with soil variables measured on site. Additionally, we accounted for polygenic adaptation by searching for gene pathways showing enrichment of signatures of selection. Out of >2.5 million SNPs, we identified 57 SNPs in 19 genes that were significantly associated with soil variables and are members of three enriched pathways. At least three of these candidate genes and pathways are involved in transmembrane transport and/or associated with responses to various stresses such as oxidative stress. We conclude that both allocation and detoxification processes play a crucial role in A. halleri for coping with these unfavourable conditions.


Assuntos
Adaptação Fisiológica , Arabidopsis/fisiologia , Membrana Celular/metabolismo , Metais/metabolismo , Proteínas de Plantas/metabolismo , Solo/química , Estresse Fisiológico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interação Gene-Ambiente , Genética Populacional , Genoma de Planta , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética , Oligoelementos/metabolismo
8.
Curr Biol ; 26(3): 331-7, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26832437

RESUMO

The introduction of apomixis-asexual reproduction through seeds-into crop plants is considered the holy grail of agriculture, as it would provide a mechanism to maintain agriculturally important phenotypes [1, 2]. Apomicts produce clonal offspring, such that apomixis could be used to transgenerationally fix any genotype, including that of F1 hybrids, which are used in agriculture due to their superior vigor and yield [3-9]. However, traits (phenotypes) do not only result from a complex combination of genetic and environmental variation but can also be influenced by epigenetic variation, which can be transgenerationally heritable in plants [10-15]. Hence, it is far from clear whether genetic fixation by apomixis suffices to fix the agriculturally relevant phenotypes of F1 hybrids, in particular because hybridization was recently shown to induce epigenetic changes [16, 17]. Here, we show that the phenotypes of Hieracium pilosella hybrids can be fixed across generations by apomixis. Using a natural apomict, we created 11 hybrid genotypes (lines). In these and a parental line, we analyzed 20 phenotypic traits that are related to plant growth and reproduction. Of the 20 traits, 18 (90%) were stably inherited over two apomictic generations, grown at the same time in a randomized design, in 11 of the 12 lines. Although one hybrid line showed phenotypic instability, our results provide a fundamental proof of principle, demonstrating that apomixis can indeed be used in plant breeding and seed production to fix complex, quantitative phenotypes across generations.


Assuntos
Apomixia , Asteraceae/genética , Hibridização Genética , Fenótipo , Agricultura
9.
Plant Physiol ; 168(1): 247-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25810093

RESUMO

In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Flores/genética , Taxa de Mutação , Mutação/genética , Contagem de Células , Cromossomos de Plantas/genética , Quebras de DNA de Cadeia Dupla , Mutação da Fase de Leitura , Ploidias , Recombinação Genética , Reprodução , Plântula/genética
10.
PLoS Genet ; 10(7): e1004476, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25010342

RESUMO

Seeds of flowering plants can be formed sexually or asexually through apomixis. Apomixis occurs in about 400 species and is of great interest for agriculture as it produces clonal offspring. It differs from sexual reproduction in three major aspects: (1) While the sexual megaspore mother cell (MMC) undergoes meiosis, the apomictic initial cell (AIC) omits or aborts meiosis (apomeiosis); (2) the unreduced egg cell of apomicts forms an embryo without fertilization (parthenogenesis); and (3) the formation of functional endosperm requires specific developmental adaptations. Currently, our knowledge about the gene regulatory programs underlying apomixis is scarce. We used the apomict Boechera gunnisoniana, a close relative of Arabidopsis thaliana, to investigate the transcriptional basis underlying apomeiosis and parthenogenesis. Here, we present the first comprehensive reference transcriptome for reproductive development in an apomict. To compare sexual and apomictic development at the cellular level, we used laser-assisted microdissection combined with microarray and RNA-Seq analyses. Conservation of enriched gene ontologies between the AIC and the MMC likely reflects functions of importance to germline initiation, illustrating the close developmental relationship of sexuality and apomixis. However, several regulatory pathways differ between sexual and apomictic germlines, including cell cycle control, hormonal pathways, epigenetic and transcriptional regulation. Enrichment of specific signal transduction pathways are a feature of the apomictic germline, as is spermidine metabolism, which is associated with somatic embryogenesis in various plants. Our study provides a comprehensive reference dataset for apomictic development and yields important new insights into the transcriptional basis underlying apomixis in relation to sexual reproduction.


Assuntos
Apomixia/genética , Arabidopsis/genética , Desenvolvimento Sexual/genética , Transcrição Gênica , Arabidopsis/crescimento & desenvolvimento , Ciclo Celular/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Células Germinativas/crescimento & desenvolvimento , Meiose/genética , Reprodução/genética , Sementes/genética , Sementes/crescimento & desenvolvimento
11.
Plant Physiol ; 165(1): 424-37, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24664208

RESUMO

Over 70 years ago, increased spontaneous mutation rates were observed in Drosophila spp. hybrids, but the genetic basis of this phenomenon is not well understood. The model plant Arabidopsis (Arabidopsis thaliana) offers unique opportunities to study the types of mutations induced upon hybridization and the frequency of their occurrence. Understanding the mutational effects of hybridization is important, as many crop plants are grown as hybrids. Besides, hybridization is important for speciation and its effects on genome integrity could be critical, as chromosomal rearrangements can lead to reproductive isolation. We examined the rates of hybridization-induced point and frameshift mutations as well as homologous recombination events in intraspecific Arabidopsis hybrids using a set of transgenic mutation detector lines that carry mutated or truncated versions of a reporter gene. We found that hybridization alters the frequency of different kinds of mutations. In general, Columbia (Col)×Cape Verde Islands and Col×C24 hybrid progeny had decreased T→G and T→A transversion rates but an increased C→T transition rate. Significant changes in frameshift mutation rates were also observed in some hybrids. In Col×C24 hybrids, there is a trend for increased homologous recombination rates, except for the hybrids from one line, while in Col×Cape Verde Islands hybrids, this rate is decreased. The overall genetic distance of the parents had no influence on mutation rates in the progeny, as closely related accessions on occasion displayed higher mutation rates than accessions that are separated farther apart. However, reciprocal hybrids had significantly different mutation rates, suggesting parent-of-origin-dependent effects on the mutation frequency.


Assuntos
Arabidopsis/genética , Hibridização Genética , Taxa de Mutação , Arabidopsis/citologia , Contagem de Células , Núcleo Celular/genética , Mutação da Fase de Leitura/genética , Recombinação Homóloga/genética , Mutação INDEL/genética , Ploidias , Mutação Puntual/genética , Especificidade da Espécie
12.
Faraday Discuss ; 163: 139-58; discussion 243-75, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24020200

RESUMO

Complex multi-stage relaxation and reaction pathways after the optical excitation of molecules makes the disentanglement of the underlying mechanisms challenging. We present four examples that a new transient spectrometer with excitation fully tunable from the deep UV to the IR and 225 to 1700 nm probing allows for an analysis with greatly reduced ambiguity. The temporal resolution of about 50 fs allows us to resolve all relevant processes. For each example there is a new twist in the sequence of relaxation steps that had previously been overlooked. In malachite green it appears that the importance of the phenyl twisting has been overemphasized and rather a charge transfer state should be considered. In TINUVIN-P the predicted twisting as the driving motion for the ultrafast IC is confirmed and leads to a resolution of the earlier puzzle that the sub-5 ps regime shows kinetics deviating from a pure cooling process despite the sub-ps proton transfer cycle. For the bond cleavage of Ph2CH-Cl and Ph2CH-Br the degree of electron transfer within the radical pair can now be determined quantitatively and leads to a profound understanding of the long-term cation yield. For the first time coherent wavepacket motion in the photoproducts is reported. Last but not least the measurement of the GSB recovery in the deep UV allows for the surprising result, that even after S2 excitation of cyclopentenones the triplet states are reached with near unity probability within a few picoseconds.

13.
Chemphyschem ; 14(7): 1423-37, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23554328

RESUMO

Bond cleavage and bond formation are central to organic chemistry. Carbocations play a key role in our understanding of nucleophilic substitution reactions that involve both processes. The precise understanding of the mechanism and dynamics of the photogeneration of carbocations and carbon radicals is therefore an important quest. In particular, the role of electron transfer for the generation of carbocations from the radical pair is still unclear. A quantitative femtosecond absorption study is presented, with ultrabroad probing on selected donor and acceptor substituted benzhydryl chlorides irradiated with 270 nm (35 fs) pulses. The ultrafast bond cleavage within 300 fs is almost exclusively homolytic, thus leading to a radical pair. The carbocations observable in the nanosecond regime are generated from these radicals by electron transfer from the benzhydryl to the chlorine radical within the first tens of picoseconds. Their concentration is reduced by geminate recombination within hundreds of picoseconds. In moderately polar solvents this depletion almost extinguishes the cation population; in highly polar solvents free ions are still observable on the nanosecond timescale. The explanation of the experimental findings requires the microscopic realm of the intermediates to be accounted for, including their spatial and environmental distributions. The distance dependent electron transfer described by Marcus theory is combined with Smoluchowski diffusion. The depletion of the radical pair distribution at small distances causes a temporal increase of the mean distance and the observed stretched exponential electron transfer. A close accord with experiment can only be reached for a broad distribution of the nascent radical pairs. The increase in the inter-radical and inter-ion pair distance is measured directly as a shift of the UV/Vis absorption of the products. The results demonstrate that, at least for aprotic solvents, traditional descriptions of reaction mechanisms based on the concept of contact and solvent-separated pairs have to be reassessed.


Assuntos
Compostos Benzidrílicos/química , Cátions/química , Transporte de Elétrons , Radicais Livres/química , Estrutura Molecular , Processos Fotoquímicos , Teoria Quântica , Espectrofotometria Ultravioleta
14.
Genetics ; 191(4): 1381-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22649081

RESUMO

We present a generally applicable method allowing rapid identification of causal alleles in mutagenized genomes by next-generation sequencing. Currently used approaches rely on recovering homozygotes or extensive backcrossing. In contrast, SNP-ratio mapping allows rapid cloning of lethal and/or poorly transmitted mutations and second-site modifiers, which are often in complex genetic/transgenic backgrounds.


Assuntos
Mapeamento Cromossômico/métodos , Genes Letais , Polimorfismo de Nucleotídeo Único , Genes de Plantas , Genótipo , Mutação , Tubo Polínico/metabolismo
15.
J Am Chem Soc ; 134(28): 11481-94, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22591218

RESUMO

UV irradiation (266 or 280 nm) of benzhydryl triarylphosphonium salts Ar(2)CH-PAr(3)(+)X(-) yields benzhydryl cations Ar(2)CH(+) and/or benzhydryl radicals Ar(2)CH(•). The efficiency and mechanism of the photo-cleavage were studied by nanosecond laser flash photolysis and by ultrafast spectroscopy with a state-of-the-art femtosecond transient spectrometer. The influences of the photo-electrofuge (Ar(2)CH(+)), the photo-nucleofuge (PPh(3) or P(p-Cl-C(6)H(4))(3)), the counterion (X(-) = BF(4)(-), SbF(6)(-), Cl(-), or Br(-)), and the solvent (CH(2)Cl(2) or CH(3)CN) were investigated. Photogeneration of carbocations from Ar(2)CH-PAr(3)(+)BF(4)(-) or -SbF(6)(-) is considerably more efficient than from typical neutral precursors (e.g., benzhydryl chlorides or bromides). The photochemistry of phosphonium salts is controlled by the degree of ion pairing, which depends on the solvent and the concentration of the phosphonium salts. High yields of carbocations are obtained by photolyses of phosphonium salts with complex counterions (X(-) = BF(4)(-) or SbF(6)(-)), while photolyses of phosphonium halides Ar(2)CH-PPh(3)(+)X(-) (X(-) = Cl(-) or Br(-)) in CH(2)Cl(2) yield benzhydryl radicals Ar(2)CH(•) due to photo-electron transfer in the excited phosphonium halide ion pair. At low concentrations in CH(3)CN, the precursor salts are mostly unpaired, and the photo-cleavage mechanism is independent of the nature of the counter-anions. Dichloromethane is better suited for generating the more reactive benzhydryl cations than the more polar and more nucleophilic solvents CH(3)CN or CF(3)CH(2)OH. Efficient photo-generation of the most reactive benzhydryl cations (3,5-F(2)-C(6)H(3))(2)CH(+) and (4-(CF(3))-C(6)H(4))(2)CH(+) was only achieved using the photo-leaving group P(p-Cl-C(6)H(4))(3) and the counter-anion SbF(6)(-) in CH(2)Cl(2). The lifetimes of the photogenerated benzhydryl cations depend greatly on the decay mechanisms, which can be reactions with the solvent, with the photo-leaving group PAr(3), or with the counter-anion X(-) of the precursor salt. However, the nature of the photo-leaving group and the counterion of the precursor phosphonium salt do not affect the rates of the reactions of the obtained benzhydryl cations toward added nucleophiles. The method presented in this work allows us to generate a wide range of donor- and acceptor-substituted benzhydryl cations Ar(2)CH(+) for the purpose of studying their electrophilic reactivities.


Assuntos
Fósforo/química , Cátions , Nanotecnologia , Fotólise , Sais
16.
J Phys Chem A ; 116(46): 11064-74, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-22494693

RESUMO

The identification of the transition state or a short-lived intermediate of a chemical reaction is essential for the understanding of the mechanism. For a direct identification typically transient optical spectroscopy is used, preferentially with high temporal resolution. We combine broad-band femtosecond transient absorption measurements and on-the-fly molecular dynamics calculations to decipher the microscopic evolution of the geometry and solvation of photogenerated benzhydryl cations (Ar(2)CH(+), Ar = phenyl, p-tolyl, m-fluorophenyl, or m,m'-difluorophenyl) in bulk solution. From the high level quantum chemical calculations on the microsolvated cation we can deduce a narrowing and blue shift of the cation absorption that is nearly quantitatively equal to the experimental finding. The roughly 300 fs initial increase in the absorption signal found for all investigated combinations of benzhydryl chlorides or phosphonium salts as benzhydryl cation precursors and solvents is therefore assigned to the planarization and solvation of the nascent fragment of the bond cleavage. The actual cleavage time cannot directly be deduced from the rise of the spectroscopic signal. For alcohols as solvent, the cation combines on the picosecond time scale either with one of the solvent molecules to the ether or to a lesser degree geminately with the leaving group. The study shows that the absorption signal attributable to a species like the benzhydryl cation does not mirror the concentration during the first instances of the process. Rather, the signal is determined by the geometrical relaxation of the photoproduct and the response of the solvent.


Assuntos
Compostos Benzidrílicos/química , Cátions/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Teoria Quântica , Soluções , Espectrofotometria Ultravioleta
17.
PLoS One ; 4(8): e6641, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19680556

RESUMO

Individuals who live to 85 and beyond without developing major age-related diseases may achieve this, in part, by lacking disease susceptibility factors, or by possessing resistance factors that enhance their ability to avoid disease and prolong lifespan. Healthy aging is a complex phenotype likely to be affected by both genetic and environmental factors. We sequenced 24 candidate healthy aging genes in DNA samples from 47 healthy individuals aged eighty-five years or older (the 'oldest-old'), to characterize genetic variation that is present in this exceptional group. These healthy seniors were never diagnosed with cancer, cardiovascular disease, pulmonary disease, diabetes, or Alzheimer disease. We re-sequenced all exons, intron-exon boundaries and selected conserved non-coding sequences of candidate genes involved in aging-related processes, including dietary restriction (PPARG, PPARGC1A, SIRT1, SIRT3, UCP2, UCP3), metabolism (IGF1R, APOB, SCD), autophagy (BECN1, FRAP1), stem cell activation (NOTCH1, DLL1), tumor suppression (TP53, CDKN2A, ING1), DNA methylation (TRDMT1, DNMT3A, DNMT3B) Progeria syndromes (LMNA, ZMPSTE24, KL) and stress response (CRYAB, HSPB2). We detected 935 variants, including 848 single nucleotide polymorphisms (SNPs) and 87 insertion or deletions; 41% (385) were not recorded in dbSNP. This study is the first to present a comprehensive analysis of genetic variation in aging-related candidate genes in healthy oldest-old. These variants and especially our novel polymorphisms are valuable resources to test for genetic association in models of disease susceptibility or resistance. In addition, we propose an innovative tagSNP selection strategy that combines variants identified through gene re-sequencing- and HapMap-derived SNPs.


Assuntos
Envelhecimento/genética , Variação Genética , Idoso , Idoso de 80 Anos ou mais , Humanos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...